A Splitting Scheme for Flip-Free Distortion Energies
SIAM Journal on Imaging Sciences
MIT
,The Chinese University of Hong Kong
,MIT
,Abstract
We introduce a robust optimization method for flip-free distortion energies used, for example, in parametrization, deformation, and volume correspondence. This method can minimize a variety of distortion energies, such as the symmetric Dirichlet energy and our new symmetric gradient energy. We identify and exploit the special structure of distortion energies to employ an operator splitting technique, leading us to propose a novel Alternating Direction Method of Multipliers (ADMM) algorithm to deal with the non-convex, non-smooth nature of distortion energies. The scheme results in an efficient method where the global step involves a single matrix multiplication and the local steps are closed-form per-triangle/per-tetrahedron expressions that are highly parallelizable. The resulting general-purpose optimization algorithm exhibits robustness to flipped triangles and tetrahedra in initial data as well as during the optimization. We establish the convergence of our proposed algorithm under certain conditions and demonstrate applications to parametrization, deformation, and volume correspondence.
Links
Cite as
@article{Stein2022,
author = {Stein, Oded and Li, Jiajin and Solomon, Justin},
title = {A Splitting Scheme for Flip-Free Distortion Energies},
journal = {SIAM Journal on Imaging Sciences},
volume = {15},
number = {2},
pages = {925--959},
year = {2022}
}
Acknowledgements
This work is supported by the Swiss National Science Foundation’s Early Postdoc.Mobility fellowship. The MIT Geometric Data Processing group acknowledges the generous support of Army Research Office grant W911NF2010168, of Air Force Office of Scientific Research award FA9550-19-1-031, of National Science Foundation grant IIS-1838071, from the CSAIL Systems that Learn program, from the MIT–IBM Watson AI Laboratory, from the Toyota–CSAIL Joint Research Center, from a gift from Adobe Systems, from an MIT.nano ImmersionLab/NCSOFT Gaming Program seed grant, and from the Skoltech–MIT Next GenerationProgram.